ML Lab Internal

 

Department of Computer Science & Engineering (AI & ML, DS)

III B. Tech, I SEM

Machine Learning

Internal Lab Examination

List of programs as follows

1.      Using matplotlib and seaborn to perform data visualization on the standard dataset

a.       Find missing values

b.      Print the no of rows and columns

c.       Plot box plot

d.      Heat map

e.       Scatter plot

f.       Bubble chart

g.      Area chart

 

2.      Build a Linear Regression model using python for a particular data set by

a.       Finding missing data

b.      Splitting training and test data

c.       Evaluate the model (intercept and slope)

d.      Visualize the training set and testing  set

e.       Predict the test set result

f.       Compare actual output value with predicted values

 

3.      Build a Linear Regression model using Gradient Descent methods in python for a particular data set by

a.       Finding missing data

b.      Splitting training and test data

c.       Evaluate the model (intercept and slope)

d.      Visualize the training set and testing  set

e.       Predict the test set result

f.       Compare actual output value with predicted values

 

4.      Build a Linear Regression model using Ordinary least squared model in python for a particular data set by

a.       Finding missing data

b.      Splitting training and test data

c.       Evaluate the model (intercept and slope)

d.      Visualize the training set and testing  set

e.       Predict the test set result

f.       Compare actual output value with predicted values

 

5.      Implement quadratic Regression 

a.       Finding missing data

b.      Splitting training and test data

c.       Evaluate the model 

d.      Visualize the training set and testing  set

e.       Predict the test set result

f.       Compare actual output value with predicted values

 

6.      Implement Logistic Regression

a.       Finding missing data

b.      Splitting training and test data

c.       Evaluate the model (intercept and slope)

d.      Visualize the training set and testing  set

e.       Predict the test set result

f.       Compare actual output value with predicted values

 

7.      Implement classification using SVM 

a.       Finding missing data

b.      Splitting training and test data

c.       Evaluate the model

d.      Visualize the training set and testing  set

e.       Predict the test set result

f.       Compare actual output value with predicted values

 

8.      Implement Decision-tree learning 

a.       Create the sample dataset and save that file

b.      Read that saved CSV file

c.       Splitting training and test data

d.      Evaluate the model 

e.       Calculate the Entropy

f.       Calculate the Information Gain

g.       Display the Tree

 

9.      Implement Bagging using Random Forests 

a.       Finding missing data

b.      Splitting training and test data

c.       Evaluate the model (intercept and slope)

d.      Visualize the training set and testing  set

e.       Predict the test set result

f.       Compare actual output value with predicted values

 

10.  Implement K-means Clustering

a.       Create the sample dataset and save that file

b.      Read that saved CSV file

c.       Splitting training and test data

d.      Evaluate the model (intercept and slope)

e.       Visualize the training set and testing  set

f.       Predict the test set result

g.      Compare actual output value with predicted values

 

11.  Implement DBSCAN clustering 

a.       Create the sample dataset and save that file

b.      Read that saved CSV file

c.       Splitting training and test data

d.      Evaluate the model (intercept and slope)

e.       Visualize the training set and testing  set

f.       Predict the test set result

g.      Compare actual output value with predicted values

 

12.  Implement the Gaussian Mixture Model 

a.       Create the sample dataset and save that file

b.      Read that saved CSV file

c.       Splitting training and test data

d.      Evaluate the model (intercept and slope)

e.       Visualize the training set and testing  set

f.       Predict the test set result

g.      Compare actual output value with predicted values


Data sets

 Download LinK

Comments

Popular posts from this blog